今天给各位分享高一年级数学下学期知识点梳理的知识,其中也会对高一年级数学下学期知识点梳理进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!

本文导读目录:

1、高一年级数学下学期知识点梳理

2、高一年级下册数学重点知识点复习

3、高一年级下册数学重点知识点

  【导语】学习数学这门课程的时候需要经常进行总结,能够帮助自己更好地掌握知识。©无忧考网为各位同学整理了《高一年级数学下学期知识点梳理》,希望对你的学习有所帮助!   1.高一年级数学下学期知识点梳理 篇一   1、棱柱   棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每两个四边形的公共边都互相平行,这些面围成的几何体叫做棱柱。   棱柱的性质   (1)侧棱都相等,侧面是平行四边形   (2)两个底面与平行于底面的截面是全等的多边形   (3)过不相邻的两条侧棱的截面(对角面)是平行四边形   2、棱锥   棱锥的定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,这些面围成的几何体叫做棱锥   棱锥的性质:   (1)侧棱交于一点。侧面都是三角形   (2)平行于底面的截面与底面是相似的多边形。且其面积比等于截得的棱锥的高与远棱锥高的比的平方   3、正棱锥   正棱锥的定义:如果一个棱锥底面是正多边形,并且顶点在底面内的射影是底面的中心,这样的棱锥叫做正棱锥。   正棱锥的性质:   (1)各侧棱交于一点且相等,各侧面都是全等的等腰三角形。各等腰三角形底边上的高相等,它叫做正棱锥的斜高。   (2)多个特殊的直角三角形   a、相邻两侧棱互相垂直的正三棱锥,由三垂线定理可得顶点在底面的射影为底面三角形的垂心。   b、四面体中有三对异面直线,若有两对互相垂直,则可得第三对也互相垂直。且顶点在底面的射影为底面三角形的垂心。   2.高一年级数学下学期知识点梳理 篇二   定义:   x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。   范围:   倾斜角的取值范围是0°≤α0时α∈(0°,90°)   k   k=0时α=0°   当α=90°时k不存在   ax+by+c=0(a≠0)倾斜角为A,   则tanA=-a/b,   A=arctan(-a/b)   当a≠0时,   倾斜角为90度,即与X轴垂直   3.高一年级数学下学期知识点梳理 篇三   映射   一般地,设A、B是两个非空的函数,如果按某一个确定的对应法则f,使对于函数A中的任意一个元素x,在函数B中都有确定的元素y与之对应,那么就称对应f:AB为从函数A到函数B的一个映射。记作“f(对应关系):A(原象)B(象)”   对于映射f:A→B来说,则应满足:   (1)函数A中的每一个元素,在函数B中都有象,并且象是的;   (2)函数A中不同的元素,在函数B中对应的象可以是同一个;   (3)不要求函数B中的每一个元素在函数A中都有原象。   4.高一年级数学下学期知识点梳理 篇四   复数定义   我们把形如a+bi(a,b均为实数)的数称为复数,其中a称为实部,b称为虚部,i称为虚数单位。当虚部等于零时,这个复数可以视为实数;当z的虚部不等于零时,实部等于零时,常称z为纯虚数。复数域是实数域的代数闭包,也即任何复系数多项式在复数域中总有根。   复数表达式   虚数是与任何事物没有联系的,是绝对的,所以符合的表达式为:   a=a+ia为实部,i为虚部   复数运算法则   加法法则:(a+bi)+(c+di)=(a+c)+(b+d)i;   减法法则:(a+bi)-(c+di)=(a-c)+(b-d)i;   乘法法则:(a+bi)·(c+di)=(ac-bd)+(bc+ad)i;   除法法则:(a+bi)/(c+di)=[(ac+bd)/(c2+d2)]+[(bc-ad)/(c2+d2)]i.   例如:[(a+bi)+(c+di)]-[(a+c)+(b+d)i]=0,终结果还是0,也就在数字中没有复数的存在。[(a+bi)+(c+di)]-[(a+c)+(b+d)i]=z是一个函数。   复数与几何   ①几何形式   复数z=a+bi被复平面上的点z(a,b)确定。这种形式使复数的问题可以借助图形来研究。也可反过来用复数的理论解决一些几何问题。   ②向量形式   复数z=a+bi用一个以原点O(0,0)为起点,点Z(a,b)为终点的向量OZ表示。这种形式使复数四则运算得到恰当的几何解释。   ③三角形式   复数z=a+bi化为三角形式   5.高一年级数学下学期知识点梳理 篇五   二面角   (1)半平面:平面内的一条直线把这个平面分成两个部分,其中每一个部分叫做半平面。   (2)二面角:从一条直线出发的两个半平面所组成的图形叫做二面角。二面角的取值范围为[0°,180°]   (3)二面角的棱:这一条直线叫做二面角的棱。   (4)二面角的面:这两个半平面叫做二面角的面。   (5)二面角的平面角:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角。   (6)直二面角:平面角是直角的二面角叫做直二面角。  【导语】在学习高中数学时,同学们要学会怎样去总结重要的数学知识点。®无忧考网为各位同学整理了《高一年级下册数学重点知识点复习》,希望对你的学习有所帮助!   1.高一年级下册数学重点知识点复习 篇一   幂函数定义:   形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。   定义域和值域:   当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根[据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。当x为不同的数值时,幂函数的值域的不同情况如下:在x大于0时,函数的值域总是大于0的实数。在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。而只有a为正数,0才进入函数的值域   幂函数性质:   对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:   首先我们知道如果a=p/q,q和p都是整数,则x^(p/q)=q次根号(x的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+∞)。当指数n是负整数时,设a=-k,则x=1/(x^k),显然x≠0,函数的定义域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:   排除了为0与负数两种可能,即对于x>0,则a可以是任意实数;   排除了为0这种可能,即对于x   排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。   总结起来,就可以得到当a为不同的数值时,幂函数的定义域的不同情况如下:   如果a为任意实数,则函数的定义域为大于0的所有实数;   如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。   在x大于0时,函数的值域总是大于0的实数。   在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。   而只有a为正数,0才进入函数的值域。   由于x大于0是对a的任意取值都有意义的,因此下面给出幂函数在第一象限的各自情况.   2.高一年级下册数学重点知识点复习 篇二   映射、函数、反函数   1、对应、映射、函数三个概念既有共性又有区别,映射是一种特殊的对应,而函数又是一种特殊的映射.   2、对于函数的概念,应注意如下几点:   (1)掌握构成函数的三要素,会判断两个函数是否为同一函数.   (2)掌握三种表示法——列表法、解析法、图象法,能根实际问题寻求变量间的函数关系式,特别是会求分段函数的解析式.   (3)如果y=f(u),u=g(x),那么y=f[g(x)]叫做f和g的复合函数,其中g(x)为内函数,f(u)为外函数.   3、求函数y=f(x)的反函数的一般步骤:   (1)确定原函数的值域,也就是反函数的定义域;   (2)由y=f(x)的解析式求出x=f-1(y);   (3)将x,y对换,得反函数的习惯表达式y=f-1(x),并注明定义域.   注意:   ①对于分段函数的反函数,先分别求出在各段上的反函数,然后再合并到一起.   ②熟悉的应用,求f-1(x0)的值,合理利用这个结论,可以避免求反函数的过程,从而简化运算.   3.高一年级下册数学重点知识点复习 篇三   函数图像(或方程曲线的对称性)   (1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;   (2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;   (3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);   (4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;   (5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称,高中数学;   (6)函数y=f(x-a)与y=f(b-x)的图像关于直线x=对称   4.高一年级下册数学重点知识点复习 篇四   1.抛物线是轴对称图形。对称轴为直线   x=-b/2a。   对称轴与抛物线的交点为抛物线的顶点P。   特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)   2.抛物线有一个顶点P,坐标为   P(-b/2a,(4ac-b’2)/4a)   当-b/2a=0时,P在y轴上;当Δ=b’2-4ac=0时,P在x轴上。   3.二次项系数a决定抛物线的开口方向和大小。   当a>0时,抛物线向上开口;当a0),对称轴在y轴左;   当a与b异号时(即ab0时,抛物线与x轴有2个交点。   Δ=b’2-4ac=0时,抛物线与x轴有1个交点。   Δ=b’2-4ac   5.高一年级下册数学重点知识点复习 篇五   棱台   定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分。   分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等   表示:用各顶点字母,如五棱台   几何特征:   ①上下底面是相似的平行多边形   ②侧面是梯形   ③侧棱交于原棱锥的顶点   圆柱   定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体。   几何特征:   ①底面是全等的圆;   ②母线与轴平行;   ③轴与底面圆的半径垂直;   ④侧面展开图是一个矩形。   圆锥   定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体。   几何特征:   ①底面是一个圆;   ②母线交于圆锥的顶点;   ③侧面展开图是一个扇形。   圆台   定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分   几何特征:   ①上下底面是两个圆;   ②侧面母线交于原圆锥的顶点;   ③侧面展开图是一个弓形。   球体   定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体   几何特征:   ①球的截面是圆;   ②球面上任意一点到球心的距离等于半径。  【导语】学习数学这门课程的时候需要经常进行总结,这样能够帮助自己更好地掌握知识。®无忧考网为各位同学整理了《高一年级下册数学重点知识点》,希望对你的学习有所帮助!   1.高一年级下册数学重点知识点 篇一   正棱锥   正棱锥的定义:如果一个棱锥底面是正多边形,并且顶点在底面内的射影是底面的中心,这样的棱锥叫做正棱锥。   正棱锥的性质:   (1)各侧棱交于一点且相等,各侧面都是全等的等腰三角形。各等腰三角形底边上的高相等,它叫做正棱锥的斜高。   (2)多个特殊的直角三角形。   a、相邻两侧棱互相垂直的正三棱锥,由三垂线定理可得顶点在底面的射影为底面三角形的垂心。   b、四面体中有三对异面直线,若有两对互相垂直,则可得第三对也互相垂直。且顶点在底面的射影为底面三角形的垂心。   2.高一年级下册数学重点知识点 篇二   定义:   x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。   范围:   倾斜角的取值范围是0°≤α0时α∈(0°,90°)   k0时,抛物线向上开口;当a0),对称轴在y轴左;   当a与b异号时(即ab0时,抛物线与x轴有2个交点。   Δ=b’2-4ac=0时,抛物线与x轴有1个交点。   Δ=b’2-4ac   4.高一年级下册数学重点知识点 篇四   复数定义   我们把形如a+bi(a,b均为实数)的数称为复数,其中a称为实部,b称为虚部,i称为虚数单位。当虚部等于零时,这个复数可以视为实数;当z的虚部不等于零时,实部等于零时,常称z为纯虚数。复数域是实数域的代数闭包,也即任何复系数多项式在复数域中总有根。   复数表达式   虚数是与任何事物没有联系的,是绝对的,所以符合的表达式为:   a=a+ia为实部,i为虚部   复数运算法则   加法法则:(a+bi)+(c+di)=(a+c)+(b+d)i;   减法法则:(a+bi)-(c+di)=(a-c)+(b-d)i;   乘法法则:(a+bi)·(c+di)=(ac-bd)+(bc+ad)i;   除法法则:(a+bi)/(c+di)=[(ac+bd)/(c2+d2)]+[(bc-ad)/(c2+d2)]i.   例如:[(a+bi)+(c+di)]-[(a+c)+(b+d)i]=0,终结果还是0,也就在数字中没有复数的存在。[(a+bi)+(c+di)]-[(a+c)+(b+d)i]=z是一个函数。   复数与几何   ①几何形式   复数z=a+bi被复平面上的点z(a,b)确定。这种形式使复数的问题可以借助图形来研究。也可反过来用复数的理论解决一些几何问题。   ②向量形式   复数z=a+bi用一个以原点O(0,0)为起点,点Z(a,b)为终点的向量OZ表示。这种形式使复数四则运算得到恰当的几何解释。   ③三角形式   复数z=a+bi化为三角形式   5.高一年级下册数学重点知识点 篇五   定义:   从平面解析几何的角度来看,平面上的直线就是由平面直角坐标系中的一个二元一次方程所表示的图形。求两条直线的交点,只需把这两个二元一次方程联立求解,当这个联立方程组无解时,两直线平行;有无穷多解时,两直线重合;只有一解时,两直线相交于一点。常用直线向上方向与X轴正向的夹角(叫直线的倾斜角)或该角的正切(称直线的斜率)来表示平面上直线(对于X轴)的倾斜程度。可以通过斜率来判断两条直线是否互相平行或互相垂直,也可计算它们的交角。直线与某个坐标轴的交点在该坐标轴上的坐标,称为直线在该坐标轴上的截距。直线在平面上的位置,由它的斜率和一个截距完全确定。在空间,两个平面相交时,交线为一条直线。因此,在空间直角坐标系中,用两个表示平面的三元一次方程联立,作为它们相交所得直线的方程。   表达式:   斜截式:y=kx+b   两点式:(y-y1)/(y1-y2)=(x-x1)/(x1-x2)   点斜式:y-y1=k(x-x1)   截距式:(x/a)+(y/b)=0
高一年级数学下学期知识点梳理的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于高一年级数学下学期知识点梳理高一年级数学下学期知识点梳理的信息别忘了在本站进行查找喔。

未经允许不得转载! 作者:谁是谁的谁,转载或复制请以超链接形式并注明出处

原文地址:http://www.wisdombay.com.cn/post/1052.html发布于:2025-11-13