今天给各位分享高一数学必修一知识点总结的知识,其中也会对那么整数指数幂的运算性质也同样可以推广到有理数指数幂.进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!

本文导读目录:

1、高一数学必修三测试题(两套含答案)

2、高一数学必修一知识点总结

3、高中数学,必修一测试题及答案,高一三适用

  1、一、 选择题1. 从学号为050的高一某班50名学生中随机选取5名同学参加数学测试,采用系统抽样的方法,则所选5名学生的学号可能是 ( ) A. 1,2,3,4,5 B. 5,16,27,38,49 C. 2,4,6,8,10 D. 4,13,22,31,402. 给出下列四个命题: “三个球全部放入两个盒子,其中必有一个盒子有一个以上的球”是必然事件 “当x为某一实数时可使”是不可能事件 “明天顺德要下雨”是必然事件 “从100个灯泡中取出5个,5个都是次品”是随机事件.其中正确命题的个数是 ( )A. 0 B. 1 C.2 D.33. 下列各组事件中,不是互斥事件的是 ( ) A. 一个射   2、手进行一次射击,命中环数大于8与命中环数小于6 B. 统计一个班数学期中考试成绩,平均分数不低于90分与平均分数不高于分 C. 播种菜籽100粒,发芽90粒与发芽80粒 D. 检查某种产品,合格率高于70%与合格率为70%电话动迁户原住户已安装6530未安装40654. 某住宅小区有居民2万户,从中随机抽取200户,调查是否安装电话,调查的结果如表所示,则该小区已安装电话的户数估计有 ( )A. 6500户 B. 300户 C. 19000户 D. 9500户5. 有一个样本容量为50的样本数据分布如下,估计小于30的数据大约占有 ( ) 3; 8; 9; 11; 10; 6; 3.A. 94   3、% B. 6% C. 88% D. 12%6. 样本的平均数为,样本的平均数为,则样本 的平均数为 ( ) A. B. C. 2 D. 7. 在样本的频率分布直方图中,共有11个小长方形,若中间一个小长立形的面积等于其他10个小长方形的面积的和的,且样本容量为160,则中间一组有频数为 ( )A. 32 B. 0.2 C. 40 D. 0.258. 袋中装有6个白球,5只黄球,4个红球,从中任取1球,抽到的不是白球的概率为 ( )A. B. C. D. 非以上答案9. 在两个袋内,分别写着装有1,2,3,4,5,6六个数字的6张卡片,今从每个袋中各取一张卡片,则两数之和等于9的概率为 ( )A   4、. B. C. D. 10.以中的任意两个元素分别为分子与分母构成分数,则这种分数是可约分数的概率是 ( )A. B. C. D. 二、填空题11.口袋内装有100个大小相同的红球、白球和黑球,其中有45个红球,从中摸出1个球,摸出白球的概率为0.23,则摸出黑球的概率为_.12.在大小相同的6个球中,4个红球,若从中任意选取2个,则所选的2个球至少有1个红球的概率是_.13.有5条长度分别为1,3,5,7,9的线段,从中任意取出3条,则所取3条线段可构成三角形的概率是_.14.用辗转相除法求出153和119的最大公约数是_.三、解答题15.从一箱产品中随机地抽取一件产品,设事件A=“抽到的一   5、等品”,事件B=“抽到的二等品”,事件C=“抽到的三等品”,且已知,求下列事件的概率: 事件D=“抽到的是一等品或二等品”; 事件E=“抽到的是二等品或三等品”16.一组数据按从小到大顺序排列,得到-1,0,4,x,7,14中位数为5,求这组数据的平均数和方差.17.由经验得知,在大良天天商场付款处排队等候付款的人数及其概率如下图:排队人数5人及以下678910人及以上概率0.10.160.30.30.10.04求: 至多6个人排队的概率; 至少8个人排队的概率.18.为了测试某批灯光的使用寿命,从中抽取了20个灯泡进行试验,记录如下:(以小时为单位)171、159、168、166、170、1   6、58、169、166、165、162168、163、172、161、162、167、164、165、164、167 列出样本频率分布表; 画出频率分布直方图; 从频率分布的直方图中,估计这些灯泡的使用寿命。19.五个学生的数学与物理成绩如下表:学生ABCDE数学8075706560物理7066686462 作出散点图和相关直线图; 求出回归方程.20.铁路部门托运行李的收费方法如下:y是收费额(单位:元),x是行李重量(单位:),当时,按0.35/ 收费,当 时,20的部分按0.35元/,超出20的部分,则按0.65元/收费. 请根据上述收费方法求出Y关于X的函数式;画出流程图.高一数学必修三   7、总测题(B组)班次 学号 姓名 一、选择题1. 下面一段程序执行后输出结果是 ( )程序: A=2 A=A*2 A=A+6 PRINT AA. 2 B. 8 C. 10 D. 182. 学校为了了解高一学生的情况,从每班抽2人进行座谈;一次数学竞赛中,某班有10人在110分以上,40人在90100分,12人低于90分.现在从中抽取12人了解有关情况;运动会服务人员为参加400m决赛的6名同学安排跑道.就这三件事,合适的抽样方法为 ( )A. 分层抽样,分层抽样,简单随机抽样 B. 系统抽样,系统抽样,简单随机抽样C. 分层抽样,简单随机抽样,简单随机抽样 D. 系统抽样,分层抽样,简单随机抽样   8、3. 某校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自的课外阅读所用的时间数据,结果可以用右图中的条形图表示,根据条形图可得这50名学生这一天平均每人的课外阅读时间为 ( )A. 0.6h B. 0.9h C. 1.0h D. 1.5h4. 若角的终边上有一点,且,则的值是 ( )A. B. C. D. 15. 从存放号码分别为1,2,10的卡片的盒子中,有放回地取100次,每次取一张卡片并记下号码,统计结果如下:卡片号码12345678910取到的次数138576131810119 取到号码为奇数的频率是 ( )A. 0.53 B. 0.5 C. 0.47 D. 0   9、.376. 的平均数是,方差是,则另一组数的平均数和方差分别是 ( )A. B. C. D. 7. 如下图所示,程序执行后的输出结果为了 ( )开始输出结束第题图A. -1 B. 0 C. 1 D. 28. 从1,2,3,4,5中任取两个不同的数字,构成一个两位数,则这个数字大于40的概率是( )A. B. C. D. 9. 下列对古典概型的说法中正确的个数是 ( ) 试验中所有可能出现的基本事件只有有限个; 每个事件出现的可能性相等; 基本事件的总数为n,随机事件A包含k个基本事件,则; 每个基本事件出现的可能性相等;A. 1 B. 2 C. 3 D. 410.小强和小华两位同学约定下午在大   10、良钟楼公园喷水池旁见面,约定谁先到后必须等10分钟,这时若另一人还没有来就可以离开.如果小强是1:40分到达的,假设小华在1点到2点内到达,且小华在 1点到2点之间何时到达是等可能的,则他们会面的概率是 ( )A. B. C. D.二、填空题11.一个为30°,其终边按逆时针方向转三周得到的角的度数为_. 若,且,那么的值是_.12.下列说法: 设有一批产品,其次品率为0.05,则从中任取200件,必有10件次品; 做100次抛硬币的试验,有51次出现正面.因此出现正面的概率是0.51; 随机事件A的概率是频率值,频率是概率的近似值; 随机事件A的概率趋近于0,即P(A)0,则A是不   11、可能事件; 抛掷骰子100次,得点数是1的结果是18次,则出现1点的频率是; 随机事件的频率就是这个事件发生的概率;其中正确的有_13.在图的正方形中随机撒一把芝麻,用随机模拟的方法来估计圆周率的值.如果撒了1000个芝麻,落在圆内的芝麻总数是776颗,那么这次模拟中的估计值是_.(精确到0.001) 14.设有以下两个程序:程序(1) A=-6 程序(2) x=1/3 B=2 i=1 If A<0 then while i<3 A=-A x=1/(1+x) END if i=i+1 B=B2 wend A=A+B print x C=A-2*B end A=A/C B=B*C+1   12、 Print A,B,C 程序(1)的输出结果是_,_,_. 程序(2)的输出结果是_.三、解答题15.某次数学考试中,其中一个小组的成绩是:55, 89, 69, 73, 81, 56, 90, 74, 82.试画一个程序框图:程序中用S(i)表示第i个学生的成绩,先逐个输入S(i)( i=1,2,),然后从这些成绩中搜索出小于75的成绩.(注意:要求程序中必须含有循环结构)16.对某种电子元件的使用寿命进行调查,抽样200个检验结果如表:寿命(h)个数2030804030 列出频率分布表; 画出频率分布直方图以及频率分布折线图; 估计电子元件寿命在100h400h以内的频率; 估计电子元件   13、寿命在400h以上的频率.17.假设有5个条件类似的女孩,把她们分别记为A,C,J,K,S.她们应聘秘书工作,但只有3个秘书职位.因此5人中仅仅有3人被录用,如果这5个人被录用的机会均等,分别求下列事件的概率: 女孩K得到一个职位; 女孩K和S各自得到一个职位; 女孩K或者S得到一个职位.18.已知回归直线方程是:,其中,.假设学生在高中时数学成绩和物理成绩是线性相关的,若10个学生在高一下学期某次考试中数学成绩x(总分150分)和物理成绩y(总分100分)如下:x122131126111125136118113115112y87949287909683847984试求这次高一数学成绩和物理成   14、绩间的线性回归方程(系数精确到0.001)若小红这次考试的物理成绩是93分,你估计她的数学成绩是多少分呢?19.(1)单位圆上的两个动点M,N,同时从点P(1,0)出发,沿圆周运动,M点按逆时针方向旋转,速度为弧度/秒;N点按顺时针方向旋转,速度为弧度/秒,试求他们出发后第三次相遇时所用的时间以及各自所走的弧度数.x0y(2)如图,某大风车的半径为2米,每12秒旋转一周,它的最低点O离地面0.5米.风车圆周上一点A从最低点O开始,运动t秒后与地面的距离为h米.以O为原点,过点O的圆的切线为x轴,建立直角坐标系. 假设和的夹角为,求关于t的关系式; 当t=4秒时,求扇形的面积; 求函数h=f(t   15、)的关系式.数学必修三总测题A组一、 选择题1.B 2.D 3.B 4.D 5. C 6.B 7.A 8.C 9.C 10.D二、填空题11. 0.32 12. 13. 14. 17三、解答题15.解:=0.7+0.1=0.8=0.1+0.05=0.1516.解:1.排列式:-1,0,4,x,7,14 中位数是5,且有偶数个数 这组数为-1,0,4,6,7,14 17.解: 频率/组距18.解:(1) (2)频数频率0.250.450.30.091731681581630.06小时0.056070物理80607019.解:数学(1) (2)20.解: 程序如下:INPUT “请输入行李的重量”;xIF x20 THEN y=ELSE y=END IFPRINT “金额为”;yEND数学必修三总测题B组一.选择题1.C 2.D 3.B 4.C 5. A 6.C 7.B 8.A 9.C 10.D二、填空题11. 12. 、 13. 3.104 14. (1)5、  总结是把一定阶段内的有关情况分析研究,做出有指导性结论的书面材料,它可以帮助我们总结以往思想,发扬成绩,不如我们来制定一份总结吧。那么如何把总结写出新花样呢?下面是小编为大家整理的高一数学必修一知识点总结,仅供参考,欢迎大家阅读。   一、集合及其表示   1、集合的含义:   “集合”这个词首先让我们想到的是上体育课或者开会时老师经常喊的“全体集合”。数学上的“集合”和这个意思是一样的,只不过一个是动词一个是名词而已。   所以集合的含义是:某些指定的对象集在一起就成为一个集合,简称集,其中每一个对象叫元素。比如高一二班集合,那么所有高一二班的同学就构成了一个集合,每一个同学就称为这个集合的元素。   2、集合的表示   通常用大写字母表示集合,用小写字母表示元素,如集合A={a,b,c}。a、b、c就是集合A中的元素,记作a∈A,相反,d不属于集合A,记作d?A。   有一些特殊的集合需要记忆:   非负整数集(即自然数集)N正整数集N_或N+   整数集Z有理数集Q实数集R   集合的表示方法:列举法与描述法。   ①列举法:{a,b,c……}   ②描述法:将集合中的元素的公共属性描述出来。如{x?R|x-3>2},{x|x-3>2},{(x,y)|y=x2+1}   ③语言描述法:例:{不是直角三角形的三角形}   例:不等式x-3>2的解集是{x?R|x-3>2}或{x|x-3>2}   强调:描述法表示集合应注意集合的代表元素   A={(x,y)|y=x2+3x+2}与B={y|y=x2+3x+2}不同。集合A中是数组元素(x,y),集合B中只有元素y。   3、集合的三个特性   (1)无序性   指集合中的'元素排列没有顺序,如集合A={1,2},集合B={2,1},则集合A=B。   例题:集合A={1,2},B={a,b},若A=B,求a、b的值。   解:,A=B   注意:该题有两组解。   (2)互异性   指集合中的元素不能重复,A={2,2}只能表示为{2}   (3)确定性   集合的确定性是指组成集合的元素的性质必须明确,不允许有模棱两可、含混不清的情况。   知识点总结   本节知识包括函数的单调性、函数的奇偶性、函数的周期性、函数的最值、函数的对称性和函数的图象等知识点。函数的单调性、函数的奇偶性、函数的周期性、函数的最值、函数的对称性是学习函数的图象的基础,函数的图象是它们的综合。所以理解了前面的几个知识点,函数的图象就迎刃而解了。   一、函数的单调性   1、函数单调性的定义   2、函数单调性的判断和证明:(1)定义法 (2)复合函数分析法 (3)导数证明法 (4)图象法   二、函数的奇偶性和周期性   1、函数的奇偶性和周期性的定义   2、函数的奇偶性的判定和证明方法   3、函数的.周期性的判定方法   三、函数的图象   1、函数图象的作法 (1)描点法 (2)图象变换法   2、图象变换包括图象:平移变换、伸缩变换、对称变换、翻折变换。   常见考法   本节是段考和高考必不可少的考查内容,是段考和高考考查的重点和难点。选择题、填空题和解答题都有,并且题目难度较大。在解答题中,它可以和高中数学的每一章联合考查,多属于拔高题。多考查函数的单调性、最值和图象等。   误区提醒   1、求函数的单调区间,必须先求函数的定义域,即遵循“函数问题定义域优先的原则”。   2、单调区间必须用区间来表示,不能用集合或不等式,单调区间一般写成开区间,不必考虑端点问题。   3、在多个单调区间之间不能用“或”和“ ”连接,只能用逗号隔开。   4、判断函数的奇偶性,首先必须考虑函数的定义域,如果函数的定义域不关于原点对称,则函数一定是非奇非偶函数。   5、作函数的图象,一般是首先化简解析式,然后确定用描点法或图象变换法作函数的图象。   1.函数知识:基本初等函数性质的考查,以导数知识为背景的函数问题;以向量知识为背景的函数问题;从具体函数的考查转向抽象函数考查;从重结果考查转向重过程考查;从熟悉情景的考查转向新颖情景的考查。   2.向量知识:向量具有数与形的双重性,高考中向量试题的命题趋向:考查平面向量的基本概念和运算律;考查平面向量的坐标运算;考查平面向量与几何、三角、代数等学科的综合性问题。   3.不等式知识:突出工具性,淡化独立性,突出解,是不等式命题的新取向。高考中不等式试题的`命题趋向:基本的线性规划问题为必考内容,不等式的性质与指数函数、对数函数、三角函数、二交函数等结合起来,考查不等式的性质、最值、函数的单调性等;证明不等式的试题,多以函数、数列、解析几何等知识为背景,在知识网络的交汇处命题,综合性强,能力要求高;解不等式的试题,往往与公式、根式和参数的讨论联系在一起。考查学生的等价转化能力和分类讨论能力;以当前经济、社会生产、生活为背景与不等式综合的应用题仍将是高考的热点,主要考查学生阅读理解能力以及分析问题、解决问题的能力。   4.立体几何知识:20xx年已经变得简单,20xx年难度依然不大,基本的三视图的考查难点不大,以及球与几何体的组合体,涉及切,接的问题,线面垂直、平行位置关系的考查,已经线面角,面面角和几何体的体积计算等问题,都是重点考查内容。   5.解析几何知识:小题主要涉及圆锥曲线方程,和直线与圆的位置关系,以及圆锥曲线几何性质的考查,极坐标下的解析几何知识,解答题主要考查直线和圆的知识,直线与圆锥曲线的知识,涉及圆锥曲线方程,直线与圆锥曲线方程联立,定点,定值,范围的考查,考试的难度降低。   6.导数知识:导数的考查还是以理科19题,文科20题的形式给出,从常见函数入手,导数工具作用(切线和单调性)的考查,综合性强,能力要求高;往往与公式、导数往往与参数的讨论联系在一起,考查转化与化归能力,但今年的难点整体偏低。   7.开放型创新题:答案不,或是逻辑推理题,以及解答题中的开放型试题的考查,都是重点,理科13,文科14题。   一:函数模型及其应用   本节主要包括函数的模型、函数的应用等知识点。主要是理解函数解应用题的一般步骤灵活利用函数解答实际应用题。   1、常见的函数模型有一次函数模型、二次函数模型、指数函数模型、对数函数模型、分段函数模型等。   2、用函数解应用题的基本步骤是:   (1)阅读并且理解题意。(关键是数据、字母的实际意义);   (2)设量建模;   (3)求解函数模型;   (4)简要回答实际问题。   常见考法:   本节知识在段考和高考中考查的形式多样,频率较高,选择题、填空题和解答题都有。多考查分段函数和较复杂的函数的最值等问题,属于拔高题,难度较大。   误区提醒:   1、求解应用性问题时,不仅要考虑函数本身的定义域,还要结合实际问题理解自变量的取值范围。   2、求解应用性问题时,首先要弄清题意,分清条件和结论,抓住关键词和量,理顺数量关系,然后将文字语言转化成数学语言,建立相应的数学模型。   【典型例题】   例1:   (1)某种储蓄的月利率是0。36%,今存入本金100元,求本金与利息的和(即本息和)y(元)与所存月数x之间的函数关系式,并计算5个月后的`本息和(不计复利)。   (2)按复利计算利息的一种储蓄,本金为a元,每期利率为r,设本利和为y,存期为x,写出本利和y随存期x变化的函数式。如果存入本金1000元,每期利率2。25%,试计算5期后的本利和是多少?解:(1)利息=本金×月利率×月数。y=100+100×0。36%·x=100+0。36x,当x=5时,y=101。8,∴5个月后的本息和为101。8元。   例2:   某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2(注:利润与投资单位是万元)   (1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式。   (2)该企业已筹集到10万元资金,并全部投入A,B两种产品的生产,问:怎样分配这10万元投资,才能是企业获得利润,其利润约为多少万元。(精确到1万元)。   高一数学必修一知识点   指数函数   (一)指数与指数幂的运算   1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈_.   当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数.此时,的次方根用符号表示.式子叫做根式(radical),这里叫做根指数(radicalexponent),叫做被开方数(radicand).   当是偶数时,正数的次方根有两个,这两个数互为相反数.此时,正数的正的次方根用符号表示,负的次方根用符号-表示.正的次方根与负的次方根可以合并成±(>0).由此可得:负数没有偶次方根;0的任何次方根都是0,记作。   注意:当是奇数时,当是偶数时,   2.分数指数幂   正数的分数指数幂的意义,规定:   0的正分数指数幂等于0,0的负分数指数幂没有意义   指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂.   3.实数指数幂的运算性质   (二)指数函数及其性质   1、指数函数的概念:一般地,函数叫做指数函数(exponential),其中x是自变量,函数的定义域为R.   注意:指数函数的底数的.取值范围,底数不能是负数、零和1.   2、指数函数的图象和性质   高一上册数学必修一知识点梳理   空间几何体表面积体积公式:   1、圆柱体:表面积:2πRr+2πRh体积:πR2h(R为圆柱体上下底圆半径,h为圆柱体高)   2、圆锥体:表面积:πR2+πR[(h2+R2)的]体积:πR2h/3(r为圆锥体低圆半径,h为其高,   3、a-边长,S=6a2,V=a3   4、长方体a-长,b-宽,c-高S=2(ab+ac+bc)V=abc   5、棱柱S-h-高V=Sh   6、棱锥S-h-高V=Sh/3   7、S1和S2-上、下h-高V=h[S1+S2+(S1S2)^1/2]/3   8、S1-上底面积,S2-下底面积,S0-中h-高,V=h(S1+S2+4S0)/6   9、圆柱r-底半径,h-高,C—底面周长S底—底面积,S侧—,S表—表面积C=2πrS底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h=πr2h   10、空心圆柱R-外圆半径,r-内圆半径h-高V=πh(R^2-r^2)   11、r-底半径h-高V=πr^2h/3   12、r-上底半径,R-下底半径,h-高V=πh(R2+Rr+r2)/313、球r-半径d-直径V=4/3πr^3=πd^3/6   14、球缺h-球缺高,r-球半径,a-球缺底半径V=πh(3a2+h2)/6=πh2(3r-h)/3   15、球台r1和r2-球台上、下底半径h-高V=πh[3(r12+r22)+h2]/6   16、圆环体R-环体半径D-环体直径r-环体截面半径d-环体截面直径V=2π2Rr2=π2Dd2/4   17、桶状体D-桶腹直径d-桶底直径h-桶高V=πh(2D2+d2)/12,(母线是圆弧形,圆心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母线是抛物线形)   人教版高一数学必修一知识点梳理   1、柱、锥、台、球的结构特征   (1)棱柱:   定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。   分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。   表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱。   几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。   (2)棱锥   定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体。   分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等   表示:用各顶点字母,如五棱锥   几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。   (3)棱台:   定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分。   分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等   表示:用各顶点字母,如五棱台   几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点   (4)圆柱:   定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体。   几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。   (5)圆锥:   定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体。   几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。   (6)圆台:   定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分   几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。   (7)球体:   定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体   几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。   2、空间几何体的三视图   定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图(从上向下)   注:正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;   俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;   侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。   3、空间几何体的直观图——斜二测画法   斜二测画法特点:   ①原来与x轴平行的线段仍然与x平行且长度不变;   ②原来与y轴平行的线段仍然与y平行,长度为原来的一半。   集合间的基本关系   1.子集,A包含于B,记为:,有两种可能   (1)A是B的一部分,   (2)A与B是同一集合,A=B,A、B两集合中元素都相同。   反之:集合A不包含于集合B,记作。   如:集合A={1,2,3},B={1,2,3,4},C={1,2,3,4},三个集合的关系可以表示为,,B=C。A是C的子集,同时A也是C的真子集。   2.真子集:如果A?B,且A?B那就说集合A是集合B的真子集,记作AB(或BA)   3、不含任何元素的集合叫做空集,记为Φ。Φ是任何集合的.子集。   4、有n个元素的集合,含有2n个子集,2n-1个真子集,含有2n-2个非空真子集。如A={1,2,3,4,5},则集合A有25=32个子集,25-1=31个真子集,25-2=30个非空真子集。   例:集合共有个子集。(13年高考第4题,简单)   练习:A={1,2,3},B={1,2,3,4},请问A集合有多少个子集,并写出子集,B集合有多少个非空真子集,并将其写出来。   解析:   集合A有3个元素,所以有23=8个子集。分别为:①不含任何元素的子集Φ;②含有1个元素的子集{1}{2}{3};③含有两个元素的子集{1,2}{1,3}{2,3};④含有三个元素的子集{1,2,3}。   集合B有4个元素,所以有24-2=14个非空真子集。具体的子集自己写出来。   此处这么罗嗦主要是为了让同学们注意写的顺序,数学就是要讲究严谨性和逻辑性的。一定要养成自己的逻辑习惯。如果就是为了提高计算能力倒不如直接去菜场卖菜算了,绝对能飞速提高的,那学数学也没什么必要了。   一、指数函数   (一)指数与指数幂的运算   1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈_.   当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数.此时,的次方根用符号表示.式子叫做根式(radical),这里叫做根指数(radicalexponent),叫做被开方数(radicand).   当是偶数时,正数的次方根有两个,这两个数互为相反数.此时,正数的正的次方根用符号表示,负的次方根用符号-表示.正的次方根与负的次方根可以合并成±(>0).由此可得:负数没有偶次方根;0的任何次方根都是0,记作。   注意:当是奇数时,当是偶数时,   2.分数指数幂   正数的分数指数幂的意义,规定:   0的正分数指数幂等于0,0的负分数指数幂没有意义   指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂.   3.实数指数幂的运算性质   (二)指数函数及其性质   1、指数函数的概念:一般地,函数叫做指数函数(exponential),其中x是自变量,函数的定义域为R.   注意:指数函数的底数的取值范围,底数不能是负数、零和1.   2、指数函数的图象和性质   【函数的应用】   1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。   2、函数零点的意义:函数的`零点就是方程实数根,亦即函数的图象与轴交点的横坐标。即:   方程有实数根函数的图象与轴有交点函数有零点.   3、函数零点的求法:   求函数的零点:   1(代数法)求方程的实数根;   2(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点.   4、二次函数的零点:   二次函数.   1)△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.   2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点.   3)△0时,开口方向向上,a0时,抛物线向上开口;当a2的解集是{x?R|x—3>2}或{x|x—3>2}   4、集合的分类:   1、有限集含有有限个元素的集合   2、无限集含有无限个元素的集合   3、空集不含任何元素的集合例:{x|x2=—5}   知识点2   I、定义与定义表达式   一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c   (a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a0时,抛物线向上开口;当a0时,抛物线向上开口;当a0),对称轴在y轴左;   当a与b异号时(即ab0时,抛物线与x轴有2个交点。   Δ=b’2—4ac=0时,抛物线与x轴有1个交点。   Δ=b’2—4ac0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点。   (2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点。   (3)△2} ,{x| x-3>2}   3) 语言描述法:例:{不是直角三角形的三角形}   4) Venn图:   4、集合的分类:   (1) 有限集 含有有限个元素的集合   (2) 无限集 含有无限个元素的集合   (3) 空集 不含任何元素的集合 例:{x|x2=-5}   二、集合间的基本关系   1.“包含”关系—子集   注意: 有两种可能(1)A是B的一部分,;(2)A与B是同一集合。   反之: 集合A不包含于集合B,或集合B不包含集合A,记作A B或B A   2.“相等”关系:A=B (5≥5,且5≤5,则5=5)   实例:设 A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”   即:① 任何一个集合是它本身的子集。A?A   ②真子集:如果A?B,且A? B那就说集合A是集合B的真子集,记作A B(或B A)   ③如果 A?B, B?C ,那么 A?C   ④ 如果A?B 同时 B?A 那么A=B   3. 不含任何元素的集合叫做空集,记为Φ   规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。   ? 有n个元素的集合,含有2n个子集,2n-1个真子集   三、集合的运算   运算类型 交 集 并 集 补 集   定 义 由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作A B(读作‘A交B’),即A B={x|x A,且x B}.   由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:A B(读作‘A并B’),即A B ={x|x A,或x B}).   设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)   二、函数的有关概念   1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作: y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.   注意:   1.定义域:能使函数式有意义的实数x的集合称为函数的定义域。   求函数的定义域时列不等式组的主要依据是:   (1)分式的分母不等于零;   (2)偶次方根的被开方数不小于零;   (3)对数式的真数必须大于零;   (4)指数、对数式的底必须大于零且不等于1.   (5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.   (6)指数为零底不可以等于零,   (7)实际问题中的函数的定义域还要保证实际问题有意义.   相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定义域一致 (两点必须同时具备)   2.值域 : 先考虑其定义域   (1)观察法   (2)配方法   (3)代换法   3. 函数图象知识归纳   (1)定义:在平面直角坐标系中,以函数 y=f(x) , (x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数 y=f(x),(x ∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上 .   (2) 画法   A、 描点法:   B、 图象变换法   常用变换方法有三种   1) 平移变换   2) 伸缩变换   3) 对称变换   4.区间的概念   (1)区间的分类:开区间、闭区间、半开半闭区间   (2)无穷区间   (3)区间的数轴表示.   5.映射   一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A B为从集合A到集合B的一个映射。记作f:A→B   6.分段函数   (1)在定义域的不同部分上有不同的'解析表达式的函数。   (2)各部分的自变量的取值情况.   (3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集.   补充:复合函数   如果y=f(u)(u∈M),u=g(x)(x∈A),则 y=f[g(x)]=F(x)(x∈A) 称为f、g的复合函数。   二.函数的性质   1.函数的单调性(局部性质)   (1)增函数   设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1   如果对于区间D上的任意两个自变量的值x1,x2,当x1f(x2),那么就说f(x)在这个区间上是减函数.区间D称为y=f(x)的单调减区间.   注意:函数的单调性是函数的局部性质;   (2) 图象的特点   如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.   (3).函数单调区间与单调性的判定方法   (A) 定义法:   ○1 任取x1,x2∈D,且x1   ○2 作差f(x1)-f(x2);   ○3 变形(通常是因式分解和配方);   ○4 定号(即判断差f(x1)-f(x2)的正负);   ○5 下结论(指出函数f(x)在给定的区间D上的单调性).   (B)图象法(从图象上看升降)   (C)复合函数的单调性   复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律:“同增异减”   注意:函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集.   8.函数的奇偶性(整体性质)   (1)偶函数   一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.   (2).奇函数   一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数.   (3)具有奇偶性的函数的图象的特征   偶函数的图象关于y轴对称;奇函数的图象关于原点对称.   利用定义判断函数奇偶性的步骤:   ○1首先确定函数的定义域,并判断其是否关于原点对称;   ○2确定f(-x)与f(x)的关系;   ○3作出相应结论:若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是偶函数;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数.   (2)由 f(-x)±f(x)=0或f(x)/f(-x)=±1来判定;   (3)利用定理,或借助函数的图象判定 .   9、函数的解析表达式   (1).函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.   (2)求函数的解析式的主要方法有:   1) 凑配法   2) 待定系数法   3) 换元法   4) 消参法   10.函数最大(小)值(定义见课本p36页)   ○1 利用二次函数的性质(配方法)求函数的最大(小)值   ○2 利用图象求函数的最大(小)值   ○3 利用函数单调性的判断函数的最大(小)值:   如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有最大值f(b);   如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b);   高一数学集合有关概念   集合的含义   集合的中元素的三个特性:   元素的确定性如:世界上的山   元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}   元素的无序性:如:{a,b,c}和{a,c,b}是表示同一个集合   3。集合的表示:{…}如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}   用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}   集合的表示方法:列举法与描述法。   注意:常用数集及其记法:   非负整数集(即自然数集)记作:N   正整数集N_N+整数集Z有理数集Q实数集R   列举法:{a,b,c……}   描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。{x(R|x—3>2},{x|x—3>2}   语言描述法:例:{不是直角三角形的.三角形}   Venn图:   4、集合的分类:   有限集含有有限个元素的集合   无限集含有无限个元素的集合   空集不含任何元素的集合例:{x|x2=—5}   1.二次函数y=ax^2,y=a(x-h)^2,y=a(x-h)^2+k,y=ax^2+bx+c(各式中,a≠0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表:   解析式   顶点坐标   对称轴   y=ax^2   (0,0)   x=0   y=a(x-h)^2   (h,0)   x=h   y=a(x-h)^2+k   (h,k)   x=h   y=ax^2+bx+c   (-b/2a,[4ac-b^2]/4a)   x=-b/2a   当h>0时,y=a(x-h)^2的图象可由抛物线y=ax^2向右平行移动h个单位得到,   当h0,k>0时,将抛物线y=ax^2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)^2+k的图象;   当h>0,k0时,开口向上,当a0,当x≤-b/2a时,y随x的增大而减小;当x≥-b/2a时,y随x的增大而增大.若a0,图象与x轴交于两点A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax^2+bx+c=0   (a≠0)的两根.这两点间的距离AB=|x?-x?|   当△=0.图象与x轴只有一个交点;   当△0时,图象落在x轴的上方,x为任何实数时,都有y>0;当a0(a0时,直线必通过一、三象限,y随x的增大而增大;   当k   当b>0时,直线必通过一、二象限;   当b=0时,直线通过原点   当b   特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。   这时,当k>0时,直线只通过一、三象限;当k   四、确定一次函数的表达式:   已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。   (1)设一次函数的表达式(也叫解析式)为y=kx+b。   (2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。所以可以列出2个方程:y1=kx1+b……①和y2=kx2+b……②   (3)解这个二元一次方程,得到k,b的值。   (4)最后得到一次函数的表达式。   五、一次函数在生活中的应用:   当时间t一定,距离s是速度v的一次函数。s=vt。   当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。设水池中原有水量S。g=S-ft。   六、常用公式:(不全,希望有人补充)   求函数图像的k值:(y1-y2)/(x1-x2)   求与x轴平行线段的中点:|x1-x2|/2   求与y轴平行线段的中点:|y1-y2|/2   求任意线段的长:√(x1-x2)^2+(y1-y2)^2(注:根号下(x1-x2)与(y1-y2)的平方和)   集合的运算   运算类型交 集并 集补 集   定义域 R定义域 R   值域>0值域>0   在R上单调递增在R上单调递减   非奇非偶函数非奇非偶函数   函数图象都过定点(0,1)函数图象都过定点(0,1)   注意:利用函数的单调性,结合图象还可以看出:   (1)在[a,b]上, 值域是 或 ;   (2)若 ,则 ; 取遍所有正数当且仅当 ;   (3)对于指数函数 ,总有 ;   二、对数函数   (一)对数   1.对数的概念:   一般地,如果 ,那么数 叫做以 为底 的对数,记作: ( — 底数, — 真数, — 对数式)   说明:○1 注意底数的限制 ,且 ;   ○2 ;   ○3 注意对数的书写格式.   两个重要对数:   ○1 常用对数:以10为底的对数 ;   ○2 自然对数:以无理数 为底的对数的对数 .   指数式与对数式的互化   幂值 真数   = N = b   底数   指数 对数   (二)对数的运算性质   如果 ,且 , , ,那么:   ○1 + ;   ○2 - ;   ○3 .   注意:换底公式: ( ,且 ; ,且 ; ).   利用换底公式推导下面的结论:(1) ;(2) .   (3)、重要的公式 ①、负数与零没有对数; ②、 , ③、对数恒等式   (二)对数函数   1、对数函数的概念:函数 ,且 叫做对数函数,其中 是自变量,函数的定义域是(0,+∞).   注意:○1 对数函数的定义与指数函数类似,都是形式定义,注意辨别。如: , 都不是对数函数,而只能称其为对数型函数.   ○2 对数函数对底数的限制: ,且 .   2、对数函数的性质:   a>10   定义域x>0定义域x>0   值域为R值域为R   在R上递增在R上递减   函数图象都过定点(1,0)函数图象都过定点(1,0)   (三)幂函数   1、幂函数定义:一般地,形如 的函数称为幂函数,其中 为常数.   2、幂函数性质归纳.   (1)所有的幂函数在(0,+∞)都有定义并且图象都过点(1,1);   (2) 时,幂函数的图象通过原点,并且在区间 上是增函数.特别地,当 时,幂函数的`图象下凸;当 时,幂函数的图象上凸;   (3) 时,幂函数的图象在区间 上是减函数.在第一象限内,当 从右边趋向原点时,图象在 轴右方无限地逼近 轴正半轴,当 趋于 时,图象在 轴上方无限地逼近 轴正半轴.   第四章 函数的应用   一、方程的根与函数的零点   1、函数零点的概念:对于函数 ,把使 成立的实数 叫做函数 的零点。   2、函数零点的意义:函数 的零点就是方程 实数根,亦即函数 的图象与 轴交点的横坐标。   即:方程 有实数根 函数 的图象与 轴有交点 函数 有零点.   3、函数零点的求法:   ○1 (代数法)求方程 的实数根;   ○2 (几何法)对于不能用求根公式的方程,可以将它与函数 的图象联系起来,并利用函数的性质找出零点.   4、二次函数的零点:   二次函数 .   (1)△>0,方程 有两不等实根,二次函数的图象与 轴有两个交点,二次函数有两个零点.   (2)△=0,方程 有两相等实根,二次函数的图象与 轴有一个交点,二次函数有一个二重零点或二阶零点.   (3)△<0,方程 无实根,二次函数的图象与 轴无交点,二次函数无零点.   5.函数的模型   棱锥   棱锥的定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,这些面围成的几何体叫做棱锥   棱锥的的性质:   (1)侧棱交于一点。侧面都是三角形   (2)平行于底面的截面与底面是相似的.多边形。且其面积比等于截得的棱锥的高与远棱锥高的比的平方   正棱锥   正棱锥的定义:如果一个棱锥底面是正多边形,并且顶点在底面内的射影是底面的中心,这样的棱锥叫做正棱锥。   正棱锥的性质:   (1)各侧棱交于一点且相等,各侧面都是全等的等腰三角形。各等腰三角形底边上的高相等,它叫做正棱锥的斜高。   (3)多个特殊的直角三角形   esp:   a、相邻两侧棱互相垂直的正三棱锥,由三垂线定理可得顶点在底面的射影为底面三角形的垂心。   b、四面体中有三对异面直线,若有两对互相垂直,则可得第三对也互相垂直。且顶点在底面的射影为底面三角形的垂心。   解三角形   (1)正弦定理和余弦定理   掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.   (2)应用   能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.   数列   (1)数列的概念和简单表示法   ①了解数列的概念和几种简单的表示方法(列表、图象、通项公式).   ②了解数列是自变量为正整数的一类函数.   (2)等差数列、等比数列   ①理解等差数列、等比数列的概念.   ②掌握等差数列、等比数列的通项公式与前项和公式.   ③能在具体的问题情境中,识别数列的`等差关系或等比关系,并能用有关知识解决相应的问题.   ④了解等差数列与一次函数、等比数列与指数函数的关系.   不等式   不等关系   了解现实世界和日常生活中的不等关系,了解不等式(组)的实际背景.   (2)一元二次不等式   ①会从实际情境中抽象出一元二次不等式模型.   ②通过函数图象了解一元二次不等式与相应的二次函数、一元二次方程的联系.   ③会解一元二次不等式,对给定的一元二次不等式,会设计求解的`程序框图.   (3)二元一次不等式组与简单线性规划问题   ①会从实际情境中抽象出二元一次不等式组.   ②了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组.   ③会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.   (4)基本不等式:   ①了解基本不等式的证明过程.   ②会用基本不等式解决简单的(小)值问题圆的辅助线一般为连圆心与切线或者连圆心与弦中点   【高一数学必修一知识点总结】相关文章:   高一数学必修知识点总结12-15   高一数学必修一知识点总结12-07   高一数学必修一知识点总结07-18   高一数学必修一知识点总结01-03   高一数学必修一知识点总结03-08   高一数学必修1知识点总结09-08   高一数学必修二知识点总结11-08   高一必修一数学集合知识点总结12-03   高一数学必修一知识点总结归纳02-15   高一数学必修一知识点总结归纳01-14  数学的学科特点是公式背了一大堆,你要是不动手做题,你永远也学不会那些数字符号。数学必修一作为高一数学的入门教材,不仅高考占有很重要的比例,还对日后数学的成绩起着不可替代的作用,所以高一数学是重中之重,无论是家长还是孩子都应该格外重视高一的基础学年,别让数学一误误终生的剧情发生在你的身上。   检验数学成绩好坏的标准就是一张考卷的正确率,北北学姐为大家整理了“高中数学必修一测试题及答案”,大家可以用他来检验自己必修一的掌握程度。希望能帮到同学们提高成绩,决战高考!   答案获取:   个人主页直接找到我或者下方付费咨询   ​
高一数学必修一知识点总结的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于那么整数指数幂的运算性质也同样可以推广到有理数指数幂.高一数学必修一知识点总结的信息别忘了在本站进行查找喔。

未经允许不得转载! 作者:谁是谁的谁,转载或复制请以超链接形式并注明出处

原文地址:http://www.wisdombay.com.cn/post/1994.html发布于:2025-11-17